IPv6 Deployment in European National Research and Education Networks (NRENs)

Tim Chown
University of Southampton, UK
tjc@ecs.soton.ac.uk
SAINT2003 Workshop, 27 January 2003
IPv6 rationale

• IP is fundamental converging platform for the future
• IPv6 has clear advantages for scalability
 – 128-bit address space, improved mobility, plug and play networking, end-to-end communication (NAT avoidance)
• Academic networks are and can be used for
 – Commercial university operation
 – Research projects
 – Wireless campuses
 – Remote learning
 – Collaborative working
 – Distributed computing (the Grid and E-Science)
• IPv6 can enhance all these areas
IPv6 Applications

- Taking IPv6 into research
 - NRENs can deploy ahead of commercial viability
- By deploying IPv6 we hope to promote
 - Peer-to-Peer (p2p) applications
 - Transparent end-to-end connectivity (no NAT, middleboxes)
 - New Grid and distributed computing functionality
 - New mobile features
 - Device to device communication
 - New classes of devices, e.g. remote sensor networks
- There is no killer IPv6 application (yet…)
 - But the Web came many years after IPv4 was deployed
Wireless campus deployment

• Growing numbers of students own laptops
• PDA devices have Wireless LAN adaptors
• Opportunity to deliver WLAN in campuses
 – Easy access to information
 – New channels to deliver material
 – Combine with location awareness
 – Sensors and embedded systems with wireless IP
 – Opportunistic networking and service discovery/use
• Mobile IPv6 enables campus-wide roaming
 – Much improved support over Mobile IPv4
 – Including MIPv6 route optimisation
 – Deeper IP WLAN subnets to reduce multicast flooding
Access into student homes

- Many student homes now have ADSL
 - And many of those homes have Wireless LAN
- Many student halls have Ethernet
- Can consider broadband applications
 - Conferencing between tutor and student
 - Make use of always-on, higher bandwidth connectivity
 - p2p file sharing can be improved with IPv6
- IPv4 home networking invariably uses NAT
 - Makes it hard to run applications into the home
 - IPv6 enables remote access for many applications
GÉANT and 6NET

• All the European NRENs are interconnected by GÉANT, offering a production IPv4 network service
 – Up to 10Gbit/s links, using Juniper routers
 – An IPv6 service is expected on GÉANT in 2003
 – Many NREN plans are in sync with those of GÉANT
 – NREN networks use a variety of hardware and technologies

• GÉANT includes over 25 NRENs
 – Technical IPv6 discussion in TERENA TF-NGN WG

• 15 of the NRENs are members of the 6NET project
 – Has deployed a native IPv6-only network
 – Funded in part by the European Commission
NREN transition

- Wish to offer IPv6 services nationally
 - Harmonised with IPv6 in the GÉANT core network
- They need IPv6 address allocations
 - Most NRENs have a production /32 prefix from RIPE NCC
- Need to transport IPv6 – options include:
 - Dual-stack networking
 - IPv6 in IPv4 tunnels
 - Parallel IPv6 network
 - IPv6 over MPLS (where MPLS already exists)
 - IPv6 with ATM (ATM now rare in NREN networks)
IPv6 address space

- In Europe, IPv6 address space is allocated by the RIPE NCC
 - Most NRENs have a production IPv6 network address allocation (SubTLA)
 - The prefix is a /32, e.g. JANET (UK) is 2001:0630::/32
 - Each university site would receive a /48 prefix
 - Thus an NREN can address 2^{16} universities
 - A site /48 prefix allows 2^{16} site subnets to be allocated, with up to 2^{64} (!) hosts per subnet

- Address allocation policies will be important
 - A /48 per university seems a lot now, but in 5-10 years?
Allocations of SubTLAs

- RIPE: July 2001 - 100, October 2002 - 120
- ARIN: July 2001 - 20, October 2002 - 60
- APNIC: July 2001 - 40, October 2002 - 80
Dual-stack strategy

• NRENs need an IPv6 transition strategy
 – Need to be able to carry IPv6 on their infrastructure, and offer IPv6 services to end sites (universities)
 – Help break the4 “chicken and egg” cycle
 – Needs to be integrated with the university strategies

• Can run IPv4 and IPv6 on the same router equipment, and run both protocols over the same links, natively
 – Requires vendor implementation to have fast (hardware-based) IPv6 forwarding, and to support the required IPv6 routing protocols (BGP4+)
Dual-stack NRENs

• Some NRENs have already migrated to dual-stack on their production networks:
 – SURFnet (Cisco) – the Netherlands
 – FUnet (Juniper) - Finland
 – Renater (Cisco) - France

• Many NRENs are planning a dual-stack transition:
 – They already have an IPv6 pilot of some kind
 – DFN, UKERNA, RedIRIS, CESNET, POZNAN, UNINETT, SWITCH, …
 – Many plan to introduce native IPv6 in 2003
 – Need confidence that IPv6 performance is as good as IPv4, and that IPv6 will not adversely affect the IPv4 service
IPv6 Land Speed Record

- Promoted by Internet2 community
 - http://www.internet2.edu/lsr/
- Enables demonstration of IPv6 performance
- Record recently set on network comprising GÉANT backbone and US link
 - Ran on IPv4 production Juniper M20, M40, M160 routers
 - Static IPv6 routes used
 - Primary NREN sites RedIRIS and ARNES
 - Result was as good as IPv4 record at the time
- Furthered case for dual-stack on GÉANT in 2003
 - Bolstered by experiences of Abilene Juniper network
The LSR record confirmed…

- IPv6 single stream record confirmed at I2 Fall Meeting in L.A. in October 2002
- Next record?
The 6net project

- Deployed a pan-European IPv6 research network
 - Backbone in place since May 2002 at STM-1 rates
- Project runs until December 2004
 - 1,100 man months between 35 partner organisations
- Many study areas beyond the basic network rollout:
 - Transition tools, MIPv6, DNS, QoS, address allocation policies, IPv6 multicast, IPsec, VPNs, multihoming, application porting, VoIP, Globus/GRID toolkit, multimedia tools, network management and monitoring,…
- Desire to interconnect to international networks to further research goals through collaboration
6NET staging

• Held in Brussels early in 2002, as part of Cisco Professional Services deployment
6NET results

- 6NET has 100 deliverables due during 2002-2004
 - 97 of those are public
 - http://www.6net.org/publications/
- Existing reports include
 - MIPv6 implementations evaluation
 - Network routing models (IS-IS, IPv6-only)
 - DHCPv6 implementations evaluation (due soon)
 - IPv6 transition technologies and cookbooks
 - IPv6 application porting
 - Network management tools (e.g. RIPE NCC TTM server)
 - IPv6 deployment “missing pieces”
Missing pieces for deployment

• NRENs identifying issues from experience
 – Basic services generally working well
 – But many IPv6 required features are still lacking
• OS and router implementations improving
 – Many vendors now have good IPv6 support out of the box
• General areas to consider for IPv6 include:
 – Network robustness and performance
 – Network management
 – Application and IPv6-specific features
 – Security considerations
Network robustness

• IPv6 routing stability
 – The 6bone has led to an uncontrolled mesh of tunnels and transit (a tunnel arms race) and unpredictable behaviour
 – Problems affect the “production” IPv6 space
 – Need to promote policies to allow reliable day-to-day use of the IPv6 network

• Preference for IPv4 or IPv6 addresses
 – IPv6 preference is bad if IPv6 routing is poor

• IPv6 multihoming
 – IETF multi6 WG is stalled
 – Need to control size of DFZ routing table
 – Classic “multi-PA address” method has issues
Network management

- Includes many aspects of management...
- IPv6 and DNS
 - IPv6 transport for network lookups
 - DNS discovery in stateless autoconfiguration
 - IPv6 DNS root servers
 - Registering domain with IPv6 name servers
 - The ip6.int to ip6.arpa transition
- IPv6 and SNMP
 - MIBs being redesigned to be dual-stack
 - Currently little use of IPv6 transport for SNMP
Network management (2)

• IPv6 prefix delegation
 – Required for ISP customer access networks
 – Also useful in an academic environment
 – Proposed solution via DHCPv6 option

• Wireless LANs
 – WLAN access points managed over IPv4 only
 – Access points must be in dual-stack wired network
 – Even if only IPv6 used on the air interface

• IPv6 NTP
 – Now implemented in NTP project
Service discovery

• Wide range of methods:
 – IPv4 or IPv6 anycast
 – Link or site local IPv6 Multicast
 – Well-known site-local addresses
 – Service Location Protocol
 – Well-known DNS name
 – Piggybacking the Router Advertisements
 – DHCPv6 options

• Different protocols use different methods
 – So an IPv6 network may need to support many of them
Application issues

• Use of IPv6 site local addresses (fec0::/10)
 – A very contentious issue in IETF ipv6 WG
 – General problem of address ambiguity and leakage

• IPv6 code porting
 – Best practice required for IPv6-enabling

• Many missing applications (e.g. database methods)

• Use of the IPv6 Flow Label
 – Current definition is “open” in nature

• Use of RFC3041 privacy extensions
 – Problems for authentication by IP, and for DDoS recognition
Security issues

• Implementation and use of IPv6 IPSec
 – Support “mandated” in full IPv6 implementation
 – IETF send WG for secure Neighbor Discovery
• IPv6 Firewalls
 – Handling end to end encrypted traffic
 – Handling extension header chains, unknown options
• Security of transition methods
 – Have two protocols to handle, not one
 – Specific transition issues, e.g. open 6to4 relays
The m6bone

- IPv6 Multicast protocols are being developed and implemented
 - PIM-SM: FreeBSD/KAME, 6WIND, Cisco beta
 - Clients: Linux, FreeBSD/KAME, Windows 2000/XP
- Problem in deployment is similar to IPv4
 - Need IPv6 Multicast support in routers
 - Otherwise need to tunnel IPv6 Multicast in regular (unicast) IPv6 or IPv4 links
- First international testbed is the m6bone
 - Centred on a router operated by Renater in Paris
 - http://www.m6bone.net
M6bone, December 2002
IPv6 Multicast issues

• Experience in tools and protocols very valuable
 – Includes IPv6 Multicast beacon

• Lack of inter-domain method for PIM-SM
 – No MSDP for IPv6
 – Proposal to embed RP location in multicast address
 – Probable wider use of PIM-SSM (with no RP)

• Layer 2 snooping
 – MLD, MLDv2
 – May be important in wireless domains
 – Not clear snooping is the right thing to do
NREN next steps…

- Continue dual-stack deployment programme
 - NRENs are making national networks IPv6-enabled
 - Many more deployments planned in 2003, including GÉANT
 - Improved routing efficiency and reliability
- The key is to bring the universities online
 - Transition strategies and cookbooks for NRENs
 - But users want applications, not IP versions
 - No mandate for universities to deploy
 - Early interest, like IPv4, will be in the CS departments
- Show case studies to promote the technology
- Build and encourage national communities